

Wave Equation radians

1. Express each of the following in the form

$$k \cos(x - \alpha) \quad \text{where } k > 0 \text{ and } 0 \leq \alpha \leq 2\pi$$

a) $\sqrt{3}\cos x + \sin x$ b) $4\cos x + 3\sin x$ c) $2\cos x + \sin x$

d) $\cos x - \sin x$ e) $2\cos x + \sqrt{2}\sin x$ f) $\sqrt{3}\cos x - \sin x$

(i) Write down the maximum value of each of the above and the value of x at which this maximum occurs.

(ii) Write down the minimum value of each of the above and the value of x at which this minimum occurs.

2. Express each of the following in the form

$$k \cos(x + \alpha) \quad \text{where } k > 0 \text{ and } 0 \leq \alpha \leq 2\pi$$

a) $\cos x - \sin x$ b) $12\cos x - 5\sin x$ c) $24\cos x - 7\sin x$

d) $\cos x - \sqrt{2}\sin x$ e) $\sqrt{3}\cos x - \sin x$ f) $\sqrt{3}\cos x + 2\sin x$

(i) Write down the maximum value of each of the above and the value of x at which this maximum occurs.

(ii) Write down the minimum value of each of the above and the value of x at which this minimum occurs.

3. Express each of the following in the form

$$k \sin(x + \alpha) \quad \text{where } k > 0 \text{ and } 0 \leq \alpha \leq 2\pi$$

a) $\cos x + \sin x$ b) $\sqrt{3} \cos x + 2 \sin x$ c) $\cos x + \sqrt{2} \sin x$

d) $2 \cos x + 3 \sin x$ e) $6 \cos x + 3 \sin x$ f) $\sqrt{3} \cos x + 4 \sin x$

(i) Write down the maximum value of each of the above and the value of x at which this maximum occurs.

(ii) Write down the minimum value of each of the above and the value of x at which this minimum occurs.

4. Express each of the following in the form

$$k \sin(x - \alpha) \quad \text{where } k > 0 \text{ and } 0 \leq \alpha \leq 2\pi$$

a) $2 \sin x - \cos x$ b) $\sin x - \cos x$ c) $3 \sin x - 4 \cos x$

d) $5 \sin x - 12 \cos x$ e) $-4 \cos x + \sin x$ f) $-\sqrt{2} \cos x + \sqrt{2} \sin x$

(i) Write down the maximum value of each of the above and the value of x at which this maximum occurs.

(ii) Write down the minimum value of each of the above and the value of x at which this minimum occurs.